Презентация на тему развитие радиосвязи. Основы радиосвязи. Телевидение и его развитие

«Влияние сотового телефона» - Статистика опрошенных людей. Влияние бытовых приборов на организм человека. Цель: Возможно, что на здоровье оказывает влияние не только излучение сотовых телефонов, но совокупность факторов. Да 39% (60 чел.) Нет 32% (49 чел.) 27% (42 чел.) ответили, что не знают Всего проголосовал 151 человек. НАД ПРОЕКТОМ РАБОТАЛА: НУРСИТОВА Акзия «МОУ СОШ №18 г. Новотроицка» 11 класс.

«Радио Звезда» - Хронометраж: до 3 минут Количество выпусков в день: 10. ЧАС КОРОТКОГО РАССКАЗА Два часа увлекательного чтения. 66% слушателей Радио ЗВЕЗДА имеют высокий доход. Знание радио звезда (%, 12+). 67% аудитории – руководители, специалисты, служащие и рабочие. Теперь будете знать! Лучшие произведения российских писателей о войне, о дружбе, о любви.

«Спутниковое телевидение VIVA» - Телекафе. Детские. Бибигон. Феникс-АРТ. Drive. Интерес представляют отснятые материалы, рассказы и заметки знакомства и обнаружения. AXN Sci-Fi. Discovery Science. Охота и рыбалка. Телекомпания до сих пор имеет статус почти государственной. Ocean-TV. «Первый канал»- наследник ОРТ «Останкино» и первого канала советского телевидения.

«Урок Передача информации» - Урок 4. Схема процесса передачи информации. Цель урока: Компьютер. Информационные каналы. Телефон. Как с помощью схемы представить процесс передачи информации? Телевизор. Радио. Информационный канал. Передача информации. Разговаривают две подруги? Письмо. Подведем итоги: Источник информации. Просмотр телепередачи?

«Кино FM» - В рекламной кампании были задействованы следующие носители: Минимальный заказ - 10 трансляций. Эфир: ежедневно, 2 раза в час. Планируется федеральный охват. Программы на Кино FM. Хронометраж – 1,5 минуты. Запуск – октябрь 2007 Запланировано активное региональное развитие. Радиостанция КИНО FM: динамика аудитории с момента начала вещания.

«Влияние мобильных телефонов» - Введение. Увлечение sms сообщениями может привести к тендиниту – воспалению сухожилий пальцев. Какой лучше? Заключение. Литературный обзор. Рекомендации и выводы. Основные этапы исследовательской работы: Влияние ЭМП на головной мозг. Научите ребенка пользоваться SMS и звонить по телефону только в крайних случаях.

Всего в теме 17 презентаций

Занятие 2/1
Основы радиосвязи
Учебные вопросы
1. Классификация радиоволн.
2. Распространение радиоволн различных диапазонов.

Литература

Крухмалев
В.
И.
и
др.
Основы
построения
телекоммуникационных систем и сетей. Учебник. Горячая линияТелеком, М.: 2008. 2000у.
2. Моторкин В.А. и др. Практические основы радиосвязи. Учебное
пособие. Химки, ФГОУ ВПО АГЗ МЧС России, 2011. 2476к.
3. Папков С.В. и др. Термины и определения связи в МЧС России. –
Новогорск: АГЗ. 2011. 2871к.
4. Моторкин В.А. и др. Курс лекций по дисциплине (специальность
– защита в ЧС) «Системы связи и оповещения» (учебное пособие) –
Химки: АГЗ МЧС России - 2011. 2673к.
Головин О.В. и др. Радиосвязь – М.: Горячая линия – Телеком,
2003. С. 47-60.
Носов М.В. Системы радиосвязи – Н.: АГЗ, 1997.
Папков С.В., Алексеенко М.В. Основы организации радиосвязи
в РСЧС – Н.: АГЗ, 2003. С. 3-10.
1.
03.02.2017
2

1-й учебный вопрос
Классификация радиоволн
03.02.2017
3

300
м
f МГц
Диапазон волн - Диапазон частот
ЭМ волны промышленной частоты
Радиодиапазон:
Сверхдлинные (СДВ) – Сверхнизкие (СНЧ)
Длинные (ДВ) – Низкие (НЧ)
Средние (СВ) – Средние (СЧ)
Короткие (КВ) – Высокие (ВЧ)
Ультракороткие (УКВ):Очень высокие (ОВЧ),
Ультравысокие (УВЧ),
Сверхвысокие (СВЧ)
Миллиметровые (ММВ)
Децимиллиметровые (ДММВ)
Оптический диапазон:
Инфракрасные лучи
Видимый свет
Ультрафиолетовые лучи
300
f МГц
м
Длина волны (м)
-105
Частота (МГц)
(0-3)·10-3
105-104
104-103
103-102
102-101
101-100
100-10-1
10-1-10-2
10-2-10-3
10-3-10-4
(3-30)·10-3
(3-30)·10-2
(3-30)-1
(3-30)0
(3-30)1
(3-30)·102
(3-30)·103
(3-30)·104
(3-30)·105
3,5·10-4-7,5·10-7
7,5·10-7-4·10-7
4·10-7-5·10-9
8,6·106-4·108
4·108-7,5·108
7,5·108-6·1010
Рентгеновские лучи
10-8-10-12
3·1010-3·1012
- лучи
10-12-10-22
3·1012-3·1024
03.02.2017
6

Вид радиоволн
Тип радиоволн
Диапазон
радиоволн
(длина волны)
Мириаметровые
Сверхдлинные
(СДВ)
10...100 км
4
3...30 кГц
Очень низкие
(ОНЧ)
Километровые
Длинные (ДВ)
1...10 км
5
30...300 кГц
Низкие (НЧ)
Гектометровые
Средние (СВ)
100…1000 м
6
300...3000 кГц
Средние (СЧ)
Декаметровые
Короткие (КВ)
10...100 м
7
3...30 МГц
Высокие (ВЧ)
Метровые
1...10 м
8
30...300 МГц
Очень высокие
(ОВЧ)
Дециметровые
10...100 см
9
300...3000 МГц
Ультравысокие
(УВЧ)
1...10 см
10
3...30 ГГц
Сверх высокие
(СВЧ)
Миллиметровые
1...10 мм
11
30...300 ГГц
Крайне высокие
(КВЧ)
Децимиллиметровы
е
0,1...1 мм
12
300...3000 ГГц
Гипервысокие (ГВЧ)
Сантиметровые
Ультракороткие
(УКВ)

диапазо
на
Диапазон
частот
Вид радиочастот

2-й учебный вопрос
Распространение радиоволн различных диапазонов
03.02.2017
8

Виды распространения радиоволн:
вдоль земной поверхности;
с излучением в верхние слои атмосферы и из них обратно к
поверхности Земли;
с приемом с Земли и обратной передачей на Землю посредством
космических ретрансляторов.
03.02.2017
Рис. Идеальное распространение радиоволны
9

03.02.2017
10

Рис. Пути распространения радиоволн

Вид радиоволн
Основные способы
распространения
радиоволн
Дальность связи, км
Мириаметровые и
километровые
(сверхдлинные и
длинные)
Дифракция. Отражение
от Земли и ионосферы
До тысячи. Тысячи
Гектометровые
(средние)
Дифракция.
Преломление в
ионосфере
Сотни. Тысячи
Декаметровые
(короткие)
Преломление в
ионосфере и отражение
от Земли
Тысячи
Метровые и более
короткие
Свободное
распространение и
отражение от Земли.
Рассеяние в тропосфере
Десятки. Сотни

Особенности распространения волн диапазонов СЧ, НЧ и ОНЧ
Волны с длинами от 1 до 10 км, диапазон НЧ, и ещё более длинные,
превышают размеры неровностей почвы и препятствий, и при их
распространении заметно проявляется дифракция (огибание земной поверхности,
и тд).
Волны далее распространяются в свободном пространстве прямолинейно,
возможно образование «мертвой зоны». При понижении частоты потери энергии
волн при поглощении почвой уменьшаются. По этому НЧ и ОНЧ при одинаковой
мощности излучения распространяются на большие расстояния, чем короткие.
При мощности в десятки кВт напряжённость поля поверхностных волн
достаточна для приема сигналов на расстояниях в тысячи километров.
Пространственные волны этих диапазонов, при распространении в
направлении ионосферы, отражаются и возвращаются к Земле. Здесь происходит
отражение от земной поверхности и тд. Такое распространение называется
многоскачковым.
Дальнее ионосферное распространение волн имет для радиосвязи негативные
последствия, если в зону приема одновременно приходят поверхностные и
пространственные волны - многолучевость. В пункте В происходит сложение
волн – интерференция.
Волны диапазона ОНЧ обладают способностью проникать на большую
глубину в поверхностный слой земли и даже в морскую воду. Это делает
03.02.2017 связь в диапазоне ОНЧ с подземными и подводными объектами. 14
возможной

Вид радиоволн
Основные способы
распространения радиоволн
Дальность связи, км
Мириаметровые и
километровые (сверхдлинные
и длинные)
Дифракция. Отражение от
Земли и ионосферы
До тысячи. Тысячи
Гектометровые (средние)
Дифракция. Преломление в
ионосфере
Сотни. Тысячи
Декаметровые (короткие)
Преломление в ионосфере и
отражение от Земли
Тысячи
Метровые и более короткие
Свободное распространение и
отражение от Земли.
Рассеяние в тропосфере
Десятки. Сотни

Потери в почве возрастают с повышением частоты, дальность радиосвязи с
помощью поверхностных волн в СЧ меньше, чем на НЧ (1500 км).
Пространственные волны днем сильно поглощаются в ионосфере, Ночью
радиоприем на расстояниях 2-3 тыс. км. Между зоной радиоприема
поверхностных волн, и более отдаленной зоной приема пространственных волн
располагается территория, на которой интенсивность тех и других волн имеют
одинаковый порядок величины. Поэтому возможны глубокие интерференционные
замирания и радиосвязь оказывается неустойчивой.
Распространение волн диапазона ВЧ
Из-за значительных потерь энергии в почве дальняя связь поверхностными
волнами в диапазоне ВЧ редко превышает 100 км. Ионосферное распространение
волн, с повышением частоты улучшается благодаря уменьшению потерь.
Отражение волн от гладкой поверхности получается зеркальным: угол
падения равен углу отражения. Ионосфера неоднородна и неровна, поэтому
волны отражаются в разных направлениях, т.е. имеет место рассеянное
отражение. На Рис. показано это свойство отраженных волн, образующих
сравнительно широкий луч 1. Между зоной распространения поверхностной
волны и территорией, в которую приходят пространственные волны, образуется
«мертвая зона» Часть энергии волн может вообще не отразиться к Земле, а
распространяется в слое как в проводнике (траектория обозначена 2). Если волны
испытывают в ионизированном слое недостаточное преломление, то они уходят в
03.02.2017
17
заатмосферное
пространство; этому случаю соответствует траектория 3.

Рис. Путь радиоволн в ионосфере
03.02.2017
Рис. Сложение радиоволн вследствие многолучевого распространения
19

Вид радиоволн
Основные способы
распространения радиоволн
Дальность связи, км
Мириаметровые и
километровые (сверхдлинные
и длинные)
Дифракция. Отражение от
Земли и ионосферы
До тысячи. Тысячи
Гектометровые (средние)
Дифракция. Преломление в
ионосфере
Сотни. Тысячи
Декаметровые (короткие)
Преломление в ионосфере и
отражение от Земли
Тысячи
Метровые и более короткие
Свободное распространение и
отражение от Земли.
Поглощение. Рассеяние в
тропосфере
Десятки. Сотни

Распространение волн диапазонов ОВЧ, УВЧ и СВЧ
Волны микроволновых диапазонов распространяются подобно свету
прямолинейно. Дифракция в этих диапазонах слаба. Волны, излученные под
углом к земной поверхности, уходят в заатмосферное пространство практически
без изменения траектории, это свойство позволило успешно применить
микроволны для спутниковой связи.
Неспособность волн этих диапазонов огибать поверхность требует для
радиосвязи обеспечения геометрической видимости между передающей и
приемной антеннами (Рис. а, б).
Поскольку волны отражаются от земной поверхности, в месте приема
возможна интерференция лучей (Рис. в); и возникают интерференционные
замирания и искажения передаваемых сообщений.
При сравнительно высокой мощности дальность связи значительно
превышает обычную. Неровности земной поверхности и различие почв,
растительного покрова, наличие рек и водоемов, поселков, инженерных
сооружений и пр. влияют на нижние слои воздуха, ведут к образованию в
атмосфере зон с различной температурой и влажностью, локальных потоков
воздуха и т.п. В этих зонах, на высотах до нескольких километров, происходит
рассеяние волн, как это схематически показано на Рис. г. В этом случае часть
энергии волн достигает пунктов, отстоящих от передающей антенны на
расстояние,
в 5-10 раз превосходящее дальность геометрической видимости.21
03.02.2017

Рис. Особенности распространения радиоволн УКВ диапазона
03.02.2017
Рис. Дальнее распространение с помощью «атмосферного волновода»
22

Неоднородности существуют и в ионосфере (неравномерность концентрации
свободных электронов), где тоже происходит ионосферное рассеяние волн. При
большой мощности рассеяние обеспечивает связь на расстояниях 1-2 тыс. км.
Другие виды дальнего распространения УВЧ и СВЧ проявляются при
образовании в атмосфере протяженных и четко выраженных неоднородностей в
виде слоя. Волны распространяются внутри слоя, отражаясь от его границ, либо
между поверхностью земли и нижней границей слоя. Эти два случая
схематически изображены на Рис. д. Еще один вид дальнего распространения отражение от следов метеоров. По причине изменчивости процесса метеорное
распространение применяется только в специальных системах радиосвязи.
Помимо принимаемого радиосигнала на приемник действуют посторонние
колебания различного происхождения – радиопомехи, могут вызвать искажения
принимаемых сообщений: при радиотелефонной связи (в виде щелчков, треска и
шума, ухудшающих разборчивость речевых сообщений); телеграфный аппарат
печатает неверные знаки; на бланке факсимильного аппарата получаются лишние
линии, портящие изображение:
Посторонние радиосигналы.
Побочные излучения радиопередающих устройств.
Атмосферные помехи.
Индустриальные помехи.
Внутренние шумы радиоприемника (флуктуационные шумы).
03.02.2017
23
Космические
шумы.

Принципы радиосвязи

Электромагнитные волны
распространяются на огромные
расстояния, поэтому их используют
для передачи звука (радиоволн) и
изображения (телевидение).
Условие возникновения
электромагнитной волны это
наличие ускорения у движущихся
зарядов!
Радиосвязь - это передача
информации с помощью
электромагнитных волн.

Микрофон преобразует механические
колебания в электромагнитные колебания
звуковой частоты.

После модуляции волна готова к передаче.
Обладая высокой частотой она может передаваться в
пространстве.
И несет в себе информацию звуковой частоты.

В приемнике необходимо выделить из высокочастотных
модулированных колебаний сигнал звуковой частоты, т.е.
провести детектирование

Принципы радиосвязи

Преобразует электромагнитные колебания в
механические колебания звуковой частоты

Джеймс Максвелл
Англ. физик Джеймс Клерк
Максвелл разработал
теорию электромагнитного
поля и предсказал
существование
электромагнитных волн.

Генрих Герц
В 1887 году Г.Герц впервые
получил электромагнитные
волны
и исследовал их свойства.
Он измерил длины этих
волн и определил скорость
их распространения.

Для получения электромагнитных волн Генрих Герц
использовал простейшее устройство, называемое
вибратором Герца.
Это устройство представляет собой открытый
колебательный контур.

Электромагнитные волны регистрировались с
помощью приемного резонатора, в котором
возбуждаются колебания тока.

Александр Степанович Попов
А.С.Попов применил
электромагнитные волны для
радиосвязи.
Использовав когерер, реле,
электрический звонок Попов
создал прибор для обнаружения
и регистрации электрических
колебаний - радиоприемник.

Схема приемника Попова,

Генрих Герц

Принцип радиосвязи заключается в том, что
созданный электрический ток высокой частоты,
созданный в передающей антенне, вызывает в
окружающем пространстве быстроменяющееся
электромагнитное поле, которое
распространяется в виде электромагнитной
волны.

Для получения электромагнитных волн Генрих Герц использовал простейшее устройство, называемое вибратором Герца. Это устройство представ

Колебания
высокой частоты НЕСУЩАЯ частота
График колебаний
звуковой частоты,
т.е.
МОДУЛИРУЮЩИХ
колебаний
График
МОДУЛИРОВАННЫХ
по амплитуде
колебаний

Электромагнитные волны регистрировались с помощью приемного резонатора, в котором возбуждаются колебания тока.

Детектирование.

Изобретение радио

Принцип радиосвязи:
В передающей антенне создается
переменный электрический ток
высокой частоты, который вызывает в
окружающем пространстве
быстроменяющееся электромагнитное
поле, распространяющееся в виде
электромагнитной волны.
Достигая приемной антенны,
электромагнитная волна вызывает в ней
переменный ток той же частоты, на
которой работает передатчик.

А.С.Попов применил электромагнитные волны для радиосвязи. Использовав когерер, реле, электрический звонок Попов создал прибор для обнаруж

Для осуществления
радиосвязи
используют колебания
высокой частоты,
интенсивно
излучаемые антенной
(вырабатываются
генератором).
Для передачи звука
эти высокочастотные
колебания изменяют –
модулируют с
помощью
электрических
колебаний низкой
частоты.
МОДУЛЯЦИЯ –
изменение амплитуды
высокочастотных
колебаний
в соответствии со
звуковой частотой.

Схема приемника Попова,

В приемнике из модулированных колебаний
высокой частоты выделяются низкочастотные
колебания. Такой процесс называется
детектированием.
ДЕТЕКТИРОВАНИЕ – процесс преобразования
высокочастотного сигнала в сигнал низкой частоты.
Полученный после
детектирования сигнал
соответствует тому
звуковому сигналу, который
действовал на микрофон
передатчика. После
усиления колебания низкой
частоты могут быть
превращены в звук.

Принцип радиосвязи заключается в том, что созданный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружаю

Устройство радиоприёмника
Основным
элементом
радиоприёмника
Попова служил
когерер – трубка с
электродами и
металлическими
опилками.
Изобрёл Эдуард Бранли
в 1891г.

Простейший радиоприемник

Детектирование.

Схема передающего устройства

Схема приемного устройства

Применение радиоволн
радиоволны,
телевидение,
космическая связь,
радиолокация.

Радиоволны

Устройство радиоприёмника

Телевидение

Простейший радиоприемник

Космическая связь

7 мая – день РАДИО

Радиолокация
Обнаружение и
определение
местоположения
различных
объектов с помощью
радиоволн.

Схема передающего устройства

Радиолокация (от латинских слов «radio» излучаю и «lokatio» – расположение)
Радиолокация – обнаружение и точное
определение положения объектов с
помощью радиоволн.

Схема приемного устройства

История развития радиолокации
А. С. Попов в 1897 году во время опытов по радиосвязи между кораблями
обнаружил явление отражения радиоволн от борта корабля. Радиопередатчик
был установлен на верхнем мостике транспорта «Европа», стоявшем на якоре,
а радиоприемник - на крейсере «Африка». Во время опытов, когда между
кораблями попадал крейсер «Лейтенант Ильин», взаимодействие приборов
прекращалось, пока суда не сходили с одной прямой линии
В сентябре 1922 г. в США, Х.Тейлор и Л. Янг проводили опыты по радиосвязи на
декаметровых волнах (3-30 МГц) через реку Потомак. В это время по реке прошел
корабль, и связь прервалась - что натолкнуло их тоже на мысль о применении
радиоволн для обнаружения движущихся объектов.
В 1930 году Янг и его коллега Хайленд обнаружили отражение радиоволн от
самолета. Вскоре после этих наблюдений они разработали метод использования
радиоэха для обнаружения самолета.

Применение радиоволн

История создания радара (RADAR - аббревиатура Radio Detection
And Ranging, т.е. радиообнаружение и измерение дальности)
Роберт Уотсон-Уатт (1892 - 1973гг.)
Шотландский физик Роберт Уотсон-Уатт первый в 1935 г. построил
радарную установку, способную обнаружить самолеты на
расстоянии 64 км. Эта система сыграла огромную роль в защите
Англиии от налетов немецкой авиации во время второй мировой
войны. В СССР первые опыты по радиообнаружению самолётов
были проведены в 1934. Промышленный выпуск первых РЛС,
принятых на вооружение, был начат в 1939г. (Ю.Б.Кобзарев).

Радиоволны

Радиолокация основана на явлении отражения радиоволн от
различных объектов.
Заметное отражение возможно от объектов в том случае, если их линейные
размеры превышают длину электромагнитной волны. Поэтому
радары
8
11
работают в диапазоне СВЧ (10 -10 Гц). А так же мощность излучаемого сигнала
~ω4.

Телевидение

Антенна радиолокатора
Для радиолокации используются антенны в виде параболических
металлических зеркал, в фокусе которых расположен излучающий
диполь. За счет интерференции волн получается остронаправленное
излучение. Она может вращаться и изменять угол наклона, посылая
радиоволны в различных направлениях. Одна и та же антенна
попеременно автоматически с частотой импульсов подключается то к
передатчику, то к приёмнику.

Телевидение:

Космическая связь

Работа радиолокатора
Передатчик вырабатывает короткие импульсы переменного тока СВЧ
(длительность импульсов 10-6 с, промежуток между ними в 1000 раз больше),
которые через антенный переключатель поступают на антенну и излучаются.
В промежутках между излучениями антенна принимает отраженный от объекта
сигнал, подключаясь при этом ко входу приемника. Приёмник выполняет
усиление и обработку принятого сигнала. В самом простом случае
результирующий сигнал подаётся на лучевую трубку (экран), которая показывает
изображение, синхронизированное с движением антенны. Современный радар
включает в себя компьютер, который обрабатывает принятые антенной сигналы и
отображает их на экране в виде цифровой и текстовой информации.

Радиолокация

Определение расстояния до объекта
ct
S
2
c 3 108 м / с
S – расстояние до объекта,
t – время распространения
радиоимпульса
к объекту и
обратно
Зная ориентацию антенны во время обнаружения цели, определяют её
координаты. По изменению этих координат с течением времени определяют
скорость цели и рассчитывают её траекторию.

Глубина разведки радиолокатора
Минимальное расстояние, на котором можно обнаружить цель (время
распространения сигнала туда и обратно должно
быть больше или равно длительности импульса)
lmin
c
2
-длительность импульса
Максимальное расстояние, на котором можно обнаружить цель
(время распространения сигнала туда и обратно не
должно быть больше периода следования импульсов)
lmax
cT
2
Т-период следования импульсов

Применение радиолокации
Авиация
По сигналам на экранах радиолокаторов диспетчеры аэропортов
контролируют движение самолётов по воздушным трассам, а пилоты
точно определяют высоту полёта и очертания местности, могут
ориентироваться ночью и в сложных метеоусловиях.

Основное применение радиолокации – это ПВО.
Главная задача наблюдать за
воздушным
пространством,
обнаружить и вести
цель, в случае
необходимости
навести на нее ПВО
и авиацию.

Крылатая ракета (беспилотный летательный аппарат однократного
запуска)
Управление ракетой в полете полностью
автономное. Принцип работы её системы
навигации основан на сопоставлении
рельефа местности конкретного района
нахождения ракеты с эталонными картами
рельефа местности по маршруту ее полета,
предварительно заложенными в память
бортовой системы управления.
Радиовысотомер обеспечивает полет по
заранее заложенному маршруту в режиме
огибания рельефа за счет точного
выдерживания высоты полета: над морем не более 20 м, над сушей - от 50 до 150 м (при
подходе к цели - снижение до 20 м).
Коррекция траектории полета ракеты на
маршевом участке осуществляется по
данным подсистемы спутниковой навигации
и подсистемы коррекции по рельефу
местности.

Самолёт - невидимка
«Стелс»-технология уменьшает вероятность того, что самолет будет
запеленгован противником. Поверхность самолёта собрана из
нескольких тысяч плоских треугольников, выполненных из
материала, хорошо поглощающего радиоволны. Луч локатора,
падающий на нее, рассеивается, т.е. отражённый сигнал не
везвращается в точку, откуда он пришёл (к радиолокационной
станции противника).

Радар для измерения скорости движения транспорта
Одним из важных методов снижения аварийности является
контроль скоростного режима движения автотранспорта на
дорогах. Первыми гражданскими радарами для измерения
скорости движения транспорта американские полицейские
пользовались уже в конце Второй мировой войны. Сейчас они
применяются во всех развитых станах.

Работа радиолокатора

Метеорологические радиолокаторы для прогнозирования
погоды. Объектами радиолокационного обнаружения могут
быть
облака,
осадки,
грозовые
очаги.
Можно
прогнозировать град, ливни, шквал.

Применение в космосе
В космических исследованиях радиолокаторы применяются
для управления полётом
и слежения за спутниками,
межпланетными
станциями,
при
стыковке
кораблей.
Радиолокация планет позволила уточнить их параметры
(например расстояние от Земли и скорость вращения), состояние
атмосферы, осуществить картографирование поверхности.

Этапы развития средств связи Английский ученый Джеймс Максвелл в 1864 году теоретически предсказал существование электромагнитных волн. Английский ученый Джеймс Максвелл в 1864 году теоретически предсказал существование электромагнитных волн году экспериментально в Берлинском университете обнаружил Генрих Герц году экспериментально в Берлинском университете обнаружил Генрих Герц. 7 мая 1895 году А.С. Попов изобрел радио. 7 мая 1895 году А.С. Попов изобрел радио. В 1901 году итальянский инженер Г. Маркони впервые осуществил радиосвязь через Атлантический океан. В 1901 году итальянский инженер Г. Маркони впервые осуществил радиосвязь через Атлантический океан. Б.Л. Розинг 9 мая 1911 года электронное телевидение. Б.Л. Розинг 9 мая 1911 года электронное телевидение. 30 годы В.К. Зворыкин изобрел первую передающую трубку –иконоскоп. 30 годы В.К. Зворыкин изобрел первую передающую трубку –иконоскоп.


Связь – это важнейшее звено в системе хозяйства страны, способ общения людей, удовлетворение их производственных, духовных, культурных и социальных потребностей – это важнейшее звено в системе хозяйства страны, способ общения людей, удовлетворение их производственных, духовных, культурных и социальных потребностей


Основные направления развития средств связи Радиосвязь Радиосвязь Телефонная связь Телефонная связь Телевизионная связь Телевизионная связь Сотовая связь Сотовая связь Интернет Интернет Космическая связь Космическая связь Фототелеграф (Факс) Фототелеграф (Факс) Видеотелефонная связь Видеотелефонная связь Телеграфная связь Телеграфная связь






Космическая связь КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно-передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (напр., пояс иголок), между несколькими космическими аппаратами. КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно-передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (напр., пояс иголок), между несколькими космическими аппаратами.


Фототелеграф Фототелеграф, общепринятое сокращённое название факсимильной связи (фототелеграфной связи). Вид связи для передачи и приема нанесенных на бумагу изображений (рукописей, таблиц, чертежей, рисунков и т.п.). Вид связи для передачи и приема нанесенных на бумагу изображений (рукописей, таблиц, чертежей, рисунков и т.п.). Устройство, осуществляющее такую связь. Устройство, осуществляющее такую связь.


Первый фототелеграф В начале века немецким физиком Корном был создан фототелеграф, который ничем принципиально не отличается от современных барабанных сканеров. (На рисунке справа приведена схема телеграфа Корна и портрет изобретателя, отсканированный и переданный на расстояние более 1000 км 6 ноября 1906 года). В начале века немецким физиком Корном был создан фототелеграф, который ничем принципиально не отличается от современных барабанных сканеров. (На рисунке справа приведена схема телеграфа Корна и портрет изобретателя, отсканированный и переданный на расстояние более 1000 км 6 ноября 1906 года).


Шелфорд Бидвелл (Shelford Bidwell), британский физик, изобрел «сканирующий фототелеграф». Для передачи изображений (диаграмм, карт и фотографий) в системе использовался материал селен и электрические сигналы. Шелфорд Бидвелл (Shelford Bidwell), британский физик, изобрел «сканирующий фототелеграф». Для передачи изображений (диаграмм, карт и фотографий) в системе использовался материал селен и электрические сигналы.




Видеотелефонная связь Персональная видеотелефонная связь на UMTS-оборудовании Персональная видеотелефонная связь на UMTS-оборудовании Новейшие модели телефонных аппаратов имеют привлекательный дизайн, богатый выбор аксессуаров, широкую функциональность, поддерживают технологии Bluetooth и wideband-ready- аудио, а также XML- интеграцию с любыми корпоративными приложениями Новейшие модели телефонных аппаратов имеют привлекательный дизайн, богатый выбор аксессуаров, широкую функциональность, поддерживают технологии Bluetooth и wideband-ready- аудио, а также XML- интеграцию с любыми корпоративными приложениями


Виды линии передачи сигналов Двухпроводная линия Двухпроводная линия Электрический кабель Электрический кабель Метрический волновод Метрический волновод Диэлектрический волновод Диэлектрический волновод Радиорелейная линия Радиорелейная линия Лучеводная линия Лучеводная линия Волоконно–оптическая линия Волоконно–оптическая линия Лазерная связь Лазерная связь


Волоконно-оптические линии связи Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных. И это количество будет постоянно расти. Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных. И это количество будет постоянно расти.


Волоконно-оптические линии связи (ВОЛС) имеют ряд существенных преимуществ по сравнению с линиями связи на основе металлических кабелей. К ним относятся: большая пропускная способность, малое затухание, малые масса и габариты, высокая помехозащищенность, надежная техника безопасности, практически отсутствующие взаимные влияния, малая стоимость из-за отсутствия в конструкции цветных металлов. В ВОЛС применяют электромагнитные волны оптического диапазона. Напомним, что видимое оптическое излучение лежит в диапазоне длин волн нм. Практическое применение в ВОЛС получил инфракрасный диапазон, т.е. излучение с длиной волны более 760 нм. Принцип распространения оптического излучения вдоль оптического волокна (ОВ) основан на отражении от границы сред с разными показателями преломления (Рис. 5.7). Оптическое волокно изготавливается из кварцевого стекла в виде цилиндров с совмещенными осями и различными коэффициентами преломления. Внутренний цилиндр называется сердцевиной ОВ, а внешний слой - оболочкой ОВ.


Лазерная система связи Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются. Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются.


Впервые осуществлена лазерная связь между спутником и самолетом, Пн, 00:28, Мск Французская компания Astrium впервые в мире продемонстрировала успешную связь по лазерному лучу между спутником и самолетом. Французская компания Astrium впервые в мире продемонстрировала успешную связь по лазерному лучу между спутником и самолетом. В ходе испытаний лазерной системы связи, прошедших в начале декабря 2006 года, связь на расстоянии почти 40 тыс. км была осуществлена дважды - один раз самолет Mystere 20 находился на высоте 6 тыс. м, в другой раз высота полета составила 10 тыс. м. Скорость самолета составляла около 500 км/ч, скорость передачи данных по лазерному лучу - 50 Мб/с. Данные передавались на геостационарный телекоммуникационный спутник Artemis. В ходе испытаний лазерной системы связи, прошедших в начале декабря 2006 года, связь на расстоянии почти 40 тыс. км была осуществлена дважды - один раз самолет Mystere 20 находился на высоте 6 тыс. м, в другой раз высота полета составила 10 тыс. м. Скорость самолета составляла около 500 км/ч, скорость передачи данных по лазерному лучу - 50 Мб/с. Данные передавались на геостационарный телекоммуникационный спутник Artemis. В испытаниях использовалась авиационная лазерная система Lola (Liaison Optique Laser Aeroportee), на спутнике Artemis данные принимала лазерная система Silex. Обе системы разработаны корпорацией Astrium. В системе Lola, сообщает Optics, используется лазер Lumics с длиной волны 0,8 мкм и мощностью лазерного сигнала 300 мВт. В качестве фотоприемников используются лавинные фотодиоды. В испытаниях использовалась авиационная лазерная система Lola (Liaison Optique Laser Aeroportee), на спутнике Artemis данные принимала лазерная система Silex. Обе системы разработаны корпорацией Astrium. В системе Lola, сообщает Optics, используется лазер Lumics с длиной волны 0,8 мкм и мощностью лазерного сигнала 300 мВт. В качестве фотоприемников используются лавинные фотодиоды.

  • В современной жизни мы привыкли ежедневно пользоваться телевизором, радио, многие имеют сотовые телефоны. Эти приборы являются приемниками электромагнитных волн, с помощью которых мы получаем информацию из телецентра, от радиостанции – смотрим телепередачу, слушаем музыку, беседуем с приятелями. Передача информации с помощью электромагнитных волн называется радиосвязью.
  • Изобретение радиосвязи не было случайностью. Оно явилось итогом многочисленных исследований и открытий. Основываясь на представлениях Эрстеда, Ампера и Фарадея о магнитном поле и развивая их, английский физик Дж. Максвелл разработал теорию электромагнитного поля и предсказал существование электромагнитных волн.
  • В 1887 году немецкий физик Г. Герц экспериментально подтвердил правильность теоретических выводов Максвелла, впервые получил электромагнитные волны и исследовал их свойства. Опыты Герца открыли перед человечеством возможность применения радиоволн для осуществления связи.
  • В России одним из первых занялся изучением электромагнитных волн преподаватель офицерских курсов в Кронштадте Александр Степанович Попов. 7 мая 1895 года на заседании Русского физико-химического общества в Петербурге он продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником. День 7 мая в нашей стране отмечается как День радио. Но не думайте, что первые передачи звучали так же, как в нынешнее время. Ведь был изобретен пока только радиотелеграф. Вот текст первой радиограммы: с помощью азбуки Морзе (т.е. длинных и коротких электромагнитных сигналов) Поповым были переданы всего два слова: «Генрих Герц» - в честь великого экспериментатора.
  • Это фотография приемника, который находится в Политехническом музее. В качестве детали, непосредственно «чувствующей» электромагнитные волны, был применен когерер. Он состоит из стеклянной трубочки, в которую вставлены два электрода, а между ними помещены металлические опилки. Сопротивление опилок резко уменьшается, когда через них проходит ток высокой частоты. Если после этого встряхнуть трубочку, то сопротивление опилок вновь увеличивается. Попов предложил оригинальный способ встряхивания когерера с помощью электромагнитного звонкового реле. Присоединив к когереру вертикальный провод, он создал простейшую антенну. Позже параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов.
  • Важнейшим этапом в развитии радиосвязи было создание в 1913 году генератора незатухающих электромагнитных колебаний. Стала возможной надежная и высококачественная радиотелефонная связь – передача музыки и речи с помощью электромагнитных волн.
  • Рассмотрим физические основы радиопередачи. Чтобы передать по радио речь или музыку, необходимо прежде всего превратить с помощью микрофона звуковые колебания в электромагнитные, т.е. в переменный ток, частота которого соответствует частоте передаваемого звука (20-20000 Гц). Но для радиосвязи необходимо использовать высокочастотные колебания, которые интенсивно излучаются антенной и могут в пространстве распространяться на большие расстояния. Для получения таких колебаний используется генератор (частота от нескольких сотен тысяч герц до сотен тысяч мегагерц). «Складывая» оба эти сигнала, мы получаем высокочастотный модулированный сигнал, который интенсивно излучается антенной и содержит информацию.
  • Электромагнитные волны достигают антенны приемника и вызывают электромагнитные колебания в приемном колебательном контуре, который состоит из конденсатора переменной емкости и катушки индуктивности. Изменяя емкость конденсатора, мы настраиваем контур на частоту той или иной радиостанции. В демодуляторе из модулированных колебаний выделяется низкочастотный информационный сигнал, который подается на громкоговоритель, превращающий электрический ток в звук. Таким образом, принцип радиосвязи заключается в том, что электромагнитные колебания, возбужденные в передающей антенне, сначала преобразуются в электромагнитные волны, а затем эти электромагнитные волны в приемной антенне снова преобразуются в электромагнитные колебания.
  • Электромагнитные волны, длина волны которых от 10 км до 0,05 мм, относятся к радиодиапазону. В свою очередь, радиоволны делятся на длинные, средние, короткие и ультракороткие. Радиовещание осуществляется на длинных, средних и УКВ (до 1м) волнах. Более короткие волны используются для телевизионного вещания, радиолокации, радиорелейной связи и космической связи.
  • В современной технике отражение радиоволн различными препятствиями находит широкое применение. Высокочувствительные приемники улавливают и усиливают отраженный сигнал с целью получить информацию о том, где находится тот предмет, от которого отразилась волна. Перед вами схема определения местоположения самолета радиолокатором. Радар посылает в импульсном режиме остронаправленную электромагнитную волну. Отраженный от самолета сигнал достигает антенны радиоприемника через время T, что позволяет вычислить расстояние от радара до самолета. Измерение угла места и азимута позволяет точно определить положение самолета в пространстве. Наиболее широко применяют радиолокацию в авиации, на флоте и в космонавтике. Очень большое значение имеет она в военном деле. Также радиолокационным методом измерили расстояние от Земли до Луны и планет Солнечной системы.
  • Телевидение является, пожалуй, наиболее важным и перспективным средством связи. Схема телевещания в основном совпадает со схемой радиосвязи. Однако здесь модулируется не только звуковой сигнал, но и сигнал изображения, получаемый с помощью специальных телевизионных электронно-лучевых трубок. Для передачи используются УКВ волны с длиной волны от 6м до 30см.
  • Телевидение – это не только телевещание. Телевидение участвует в освоении космоса: телевизионные камеры устанавливают на космических кораблях, луноходах и марсоходах, с их помощью на Землю передаются изображения поверхности планет и их спутников. Телевидение находит все более широкое применение в народном хозяйстве. Например, при помощи телекамер диспетчер со своего рабочего места может видеть необходимые ему участки цеха, железнодорожного узла, морского порта, речного причала. Телевизионные установки являются единственным средством наблюдения за состоянием подземных хранилищ и скважен. Соединение телефона с телевидением дало новое средство связи – видеотелефон.
  • Радиорелейная связь осуществляется с помощью деци- и сантиметровых волн, которые распространяются в пределах прямой видимости. Поэтому линии связи состоят из цепочки приемно-передающих радиостанций, находящихся на расстоянии 40-50 км друг от друга и имеющих мачты высотой 70-100 м. Техника передачи сигналов по линии похожа на передачу эстафеты: каждый ретранслятор, приняв сигнал, усиливает его и посылает следующему ретранслятору. Радиорелейные линии служат для осуществления сотовой мобильной связи и телевизионного вещания.
  • Для космической радиосвязи используются ретрансляционные спутники связи, которые запускаются на орбиты, имеющие форму сильно вытянутых эллипсов. Такие спутники связи позволяют осуществлять телевизионное вещание и телефонную связь на самые отдаленные регионы нашей страны и планеты.
  • Быстрейшему развитию радиотехники способствовало изобретение электронной лампы и создание на ее основе генератора незатухающих колебаний. «Ламповая» электроника занимала господствующее положение почти полвека, затем на смену ей пришли полупроводниковые приборы – транзисторная электроника. В последние десятилетия главным направлением развития полупроводниковой электроники является микроэлектроника. Большое значение в ее развитии имело создание интегральных схем. В 70х годах ХХ века были созданы большие интегральные схемы (БИС), а затем разработаны микроЭВМ - компьютеры.
  • В настоящее время создается глобальная система связи, которая охватывает всю планету. МЫ НЕ МЫСЛИМ СЕБЯ БЕЗ РАДИОСВЯЗИ!

Развитие современных средств связи

Средства связи - технические и программные средства, используемые для формирования, приема, обработки, хранения, передачи, доставки сообщений электросвязи или почтовых отправлений, а также иные технические и программные средства, используемые при оказании услуг связи или обеспечении функционирования сетей связи.

виды связи П роводные (телефонные, телеграфные и т.п.) Беспроводные, в которых, в свою очередь, выделяют: радио (всенаправленные, узконаправленные, сотовые и иные радио системы), радиорелейные и космические (спутниковые) устройства, системы и комплексы.

Средства коммуникации. Первый – появление устной речи. Ученые обозначили пять мощнейших толчков, ускоривших развитие человечества, которые получила культура за время ее существования:

Второй– изобретение письменности, позволившей человеку вступать в коммуникацию с другими людьми, не находящимися с ним в непосредственном контакте.

Третий – появление и распространение книгопечатания.

Четвертый – возникновение электронных средств массовой коммуникации, которые предоставили возможность каждому стать непосредственным свидетелем и участником историко-культурного процесса, происходящего во всем мире. Радио Телевидение

Пятый, по оценкам многих специалистов, – возникновение и развитие сети Интернет, как нового средства коммуникации, предоставившего широкие возможности в формах и способах получения и передачи информации, а также осуществлении множества других функций.

Этапы развития средств связи Создание оптического телеграфа - устройства для передачи информации на дальние расстояния при помощи световых сигналов. Изобрел эту систему француз Клод Шапп.

Связь по проводам. Первый электрический телеграф создали в 1837 г. английские изобретатели: Уильям Кук Чарльз Уэтсоун

Поздняя модель телеграфа Кука и Уэтстоуна. Сигналы приводили в действие стрелки на приемнике, которые указывали на разные буквы и таким образом передавали сообщение.

Код Морзе В 1843 г. американский художник Сэмюэл Морзе - изобрел новый телеграфный код, заменивший код Кука и Уэтстоуна. Он разработал для каждой буквы знаки из точек и тире.

А Чарльз Уэтстоун создал систему, в которой оператор с помощью кода Морзе набивал сообщения на длинной бумажной ленте, поступавшей в телеграфный аппарат. На другом конце провода самописец набивал принятое сообщение на другую бумажную ленту. Впоследствии самописец заменили сигнализатором, преобразовавшим точки и тире в долгие и краткие звуки. Операторы слушали сообщения и записывали их перевод.

Изобретение первого телефона. Александр Грейам Белл (1847-1922)совместно с Томасом Уотсоном (1854 – 1934) сконструировали прибор, состоящий из передатчика (микрофона) и приемника (динамика).Микрофон и динамик были устроены одинаково В микрофоне голос говорившего заставлял колебаться мембрану, вызывая колебания электрического тока. В динамике ток поступал на мембрану, заставляя ее колебаться и воспроизводить звуки человеческого голоса. П ервый телефонный разговор состоялся 10 марта 1876 г.

Изобретение радио. Создатель радио Александр Степанович Попов (1859-1906). 7 мая 1895 года Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества. Разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Спутниковая связь. Спутники – беспилотные космические аппараты, летающие по орбите вокруг Земли. Они могут передавать телефонные разговоры и телевизионные сигналы в любую точку мира. Они также передают информацию о погоде и навигации. В 1957 году в СССР был запущен «Спутник – 1» - первый в мире искусственный спутник Земли.

В 1960 г. В США были запущены спутники «Курьер» и «Эхо». Они передали первые телефонные разговоры между США и Европой. В 1962г в США на орбиту вышел « Телстар » - первый телевизионный спутник.

Волоконно-оптические линии связи. Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом, оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных.

Лазерная система связи Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются.

Ссылки на источники информации и изображений: www.digimedia.ru/articles/svyaz/setevye-tehnologii/istoriya/faks-istoriya-ofisnogo-vorchuna/ http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BF%D0%BE%D0%B2,_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%A1%D1%82%D0%B5%D0%BF%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87 http://geniusweb.ru/?feed=rss2 ru.wikipedia.org/wiki/ Радио http://www.5ka.ru/88/19722/1.html

В продолжение темы:
Обзоры

Наручные часы – устройство, носимое на запястье, отображает текущее время, в отдельных моделях предусмотрен календарь, барометр, шагомер, компас.По принципу действия...

Новые статьи
/
Популярные