Для чего нужен и как выбрать драйвер для светодиодного освещения. Самодельный драйвер для мощных светодиодов Обзор современных драйверов управления led светильниками

Публикую сегодня третью статью . Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по , рекомендую ознакомиться.

Статья по схемам светодиодных драйверов и их ремонту

Саша, здравствуйте.

В частности, по теме освещения - схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.


Подписывайтесь! Будет интересно.


Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, – силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:

Светодиодные модули этого прожектора выглядят так:

Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:

YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):

Электрическая схема:

В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его “свита”, совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или “баян” из более мелких.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Светодиоды для LED драйверов

Я не смог определиться со светодиодами. Они в обоих модулях одинаковые, хотя их производители разные. На светодиодах нет никаких надписей (с обратной стороны – тоже). Искал у разных продавцов по строке “Сверхяркие светодиоды для LED-прожекторов и LED-люстр”. Там продают кучу разных светодиодов, но все они, или без линз, или с линзами на 60º, 90º и 120º .

Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность – частичная, или полная деградация кристаллов светодиодов. Думаю, причина – максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие “люстры” в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на АлиЭкспресс, там большой выбор. Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов – не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой “болею” с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:

LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

/ Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан: 1882 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:

Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило – это гораздо проще и дешевле – покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан: 852 раз./

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан: 1083 раз./

Особая благодарность тем, кто схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Светодиодные светильники получили массовое распространение, вследствие чего началось активное производство вторичных источников питания. Драйвер светодиодной лампы способен стабильно поддерживать заданные значения тока на выходе устройства, стабилизируя напряжение, проходящее через цепочку диодов.

Мы расскажем все о видах и принципах действия устройства преобразования тока для работы диодной лампочки. В предложенной нами статье приведены ориентиры выбора драйвера, даны полезные рекомендации. Самостоятельный домашние электрики у нас найдут проверенные на практике схемы подключения.

Диодные кристаллы состоят из двух полупроводников – анода (плюс) и катода (минус), которые и отвечают за трансформацию электросигналов. Одна область имеет проводимость P-вида, вторая – N. При подключении источника питания через эти элементы потечет ток.

За счет такой полярности электроны из зоны P-типа устремляются в зону N-типа, и наоборот, заряды из точки N устремятся к Р. Однако каждый раздел области имеет свои границы, называющиеся P-N переходами. На этих участках частицы встречаются и взаимопоглощаются или рекомбинируются.

Диод относится к полупроводниковым элементам и обладает только одним p-n переходом. По этой причине, главной характеристикой, определяющей степень яркости их свечения, является не напряжение, а ток

Во время P-N переходов напряжение снижается на определенное количество вольт, всегда одинаковое для каждого элемента цепи. Учитывая эти значения, драйвер стабилизирует показатели входящего тока и образует на выходе постоянную величину.

Какая требуется мощность и какие значения потерь при P-N прохождении указываются в паспорте светодиодного прибора. Поэтому при необходимо учитывать параметры блока питания, диапазон которых должен быть достаточным для компенсации утраченной энергии.

Для того, чтобы мощные светодиоды отработали указанное в характеристиках время, требуется стабилизирующее устройство – драйвер. На корпусе электронного механизма всегда показано его выходное напряжение

Блоки питания с напряжением от 10 до 36 В применяются для оснащения осветительных приборов.

Техника может быть самых различных видов:

  • фары автомобилей, велосипедов, мотоциклов и т. д.;
  • небольшие переносные или уличные фонари;
  • , ленты, и модули.

Однако для , а также в случае использования постоянного напряжения, драйверы допустимо не применять. Вместо них в схему вносится резистор, также питающийся от сети 220 В.

Принцип работы блока питания

Разберемся, в чем же состоят различия между источником напряжения и блоком питания. В качестве примера рассмотрим схему, изображенную ниже.

Подключив к источнику питания 12 В резистор на 40 Ом, через него будет проходить ток в 300 мА (рисунок А). При параллельном включении в цепь второго резистора значение тока составит – 600 мА (Б). Однако напряжение будет неизменным.

Несмотря на подключение двух резисторов к источнику питания, второй на выходе будет создавать неизменное напряжение, т. к. при идеальных условиях не подчиняется нагрузке

Теперь рассмотрим, как изменятся значения, если в схеме будут подключены резисторы к блоку питания. Аналогичным образом вводим реостат 40 Ом с драйвером 300 мА. Последний создает на нем напряжение в 12 В (схема В).

Если же цепь составлена из двух резисторов, то величина тока неизменна, а напряжение составит 6 В (Г).

Драйвер в отличие от источника напряжения поддерживает на выходе заданные параметры тока, однако мощность напряжения может меняться

Делая выводы, можно сказать, что качественный преобразователь поставляет нагрузке номинальный ток даже при падении напряжения. Соответственно, кристаллы диодов на 2 В или на 3 В и током на 300 мА будут гореть одинаково ярко со сниженным напряжением.

Отличительные характеристики преобразователя

Один из важнейших показателей – передаваемая мощность под нагрузкой. Устройство нельзя перегружать и пытаться получить максимально возможные результаты.

Неправильное использование способствует быстрому выходу из строя не только обзорного механизма, но и LED чипов.

К главным факторам, влияющим на работу, относятся:

  • составляющие элементы, используемые в процессе сборки;
  • степень защиты (IP);
  • минимальные и максимальные значения на входе и выходе;
  • производитель.

Современные модели преобразователей выпускаются на базе микросхем и применяют технологию широтно-импульсных преобразований (ШИМ).

В процессе работы блока питания для регулирования величины выходящего напряжения внедрен метод широтно-импульсной модуляции, при этом на выходе сохраняется аналогичный род тока, что и на входе

Такие устройства отличаются высокой степенью защиты от коротких замыканий, перегрузок сети, а также обладают повышенным КПД.

Правила подбора преобразователя тока

Для приобретения преобразователя LED лампы следует изучить ключевые . Опираться стоит на выходное напряжение, номинальный ток и выдаваемую мощность.

Мощность световых диодов

Разберем изначально выходное напряжение, которое подчинено нескольким фактором:

  • значение потерь напряжения на P-N переходах кристаллов;
  • количество световых диодов в цепочке;
  • схема подключения.

Параметры номинального тока можно определить по характерным особенностям потребителя, а именно мощности LED элементов и степени их яркости.

Этот показатель будет влиять на потребляемый кристаллами ток, диапазон которого варьируется исходя из необходимой яркости. Задача преобразователя - обеспечить этим элементам подачу нужного количества энергии.

Значение напряжения на выходе должно быть больше или идентичным общей сумме затраченной энергии на каждом блоке электросхемы

Мощность устройства зависит от силы каждого LED элемента, их цвета и количества.

Для просчета потребляемой энергии используют такую формулу:

P H = P LED * N ,

  • N – количество кристаллов в цепи.
  • Полученные показатели не должны быть меньше мощности драйвера. Теперь необходимо определить требуемое номинальное значение.

    Максимальная мощность прибора

    Следует учитывать и тот факт, что для обеспечения стабильной работы преобразователя его номинальные показатели должны превышать на 20-30 % полученное значение P H .

    Таким образом формула приобретает вид:

    P max ≥ (1,2..1,3) * P H ,

    где P max - номинальная мощность блока питания.

    Помимо мощности и количества потребителей на плате, сила нагрузки также подчинена цветовым факторам потребителя. При одинаковом токе, в зависимости от оттенка, они имеют разные показатели падения напряжения.

    Драйвер для LED лампы должен выдавать такое количество тока, которое необходимо для обеспечения максимальной яркости. При подборе устройства покупатель должен помнить о том, что мощность должна быть больше, чем используют все светодиоды

    Возьмем для примера, светодиоды американской фирмы Cree из линейки XP-E в красном цвете.

    Их характеристики выглядят следующим образом:

    • падение напряжения 1,9-2,4 В;
    • ток 350 мА;
    • средняя мощность потребления 750 мВт.

    Аналог зеленого цвета при том же токе, будет иметь совсем другие показатели: потери на P-N переходах 3,3-3,9 В, а мощность 1,25 Вт.

    Соответственно можно сделать выводы: драйвер, рассчитанный на 10 Вт, применяется для питания двенадцати красных кристаллов или восьми зеленых.

    Схема подключения светодиодов

    Выбор драйвера должен осуществляться после определения схемы подключения LED-потребителей. Если в первую очередь приобрести световые диоды, а затем подбирать к ним преобразователь, этот процесс будет сопровождаться массой сложностей.

    Для поиска устройства, обеспечивающего работу именно такого количества потребителей при заданной схеме подключения, придется потратить немало времени.

    Приведем пример с шестью потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА. Для их подключения можно использовать один из методов, при этом в каждом отдельном случае требуемые параметры блока питания будут отличаться.

    Недостатком поочередного расположения диодов является потребность в блоке питании с большим напряжением, если в цепи будет много кристаллов

    В нашем случае при последовательном подключении необходим блок на 18 В с током 300 мА. Основной плюс такого способа в том, что через всю линию проходит одинаковая сила, соответственно, все диоды горят с идентичной яркостью.

    Минусом параллельного размещения потребителей является разность яркости свечения каждой цепочки. Такое негативное явление возникает из-за разброса параметров диодов вследствие различий между током, проходящим по каждой линии

    Если применено параллельное размещение – достаточно использовать преобразователь на 9 В, однако значения затрачиваемого тока будет увеличено вдвое, в сравнении с предыдущим методом.

    Метод последовательного расположения по два диода не может быть применен с заменой количества входящих в группу кристаллов – 3 и больше. Такие ограничения связаны с тем, что через один элемент может пройти слишком большой ток, а это создает вероятность выхода из строя всей цепи

    Если используется последовательный метод с формированием пар по два светодиода, используется драйвер с аналогичными показателями, как в предыдущем случае. При этом яркость освещения будет уже равномерной.

    Однако и здесь не обошлось без отрицательных нюансов: при подаче питания к группе, вследствие разброса характеристик один из светодиодов может открываться быстрее второго, соответственно, через него и пойдет ток, вдвойне превышающий номинальное значение.

    Многие виды рассчитаны на подобные краткосрочные скачки, но такой метод относится к менее востребованным.

    Виды драйверов по типу устройства

    Приспособления, преобразующие питание 220 В на необходимые показатели для светодиодов, условно делятся на три категории: электронные; на базе конденсаторов; диммируемые.

    Рынок светотехнических аксессуаров представлен обширным разнообразием моделей драйверов в основном китайского производителя. И несмотря на низкий ценовой диапазон, из этих приборов можно выбрать вполне достойный вариант. Однако стоит обращать внимание на гарантийный талон, т.к. не вся представленная продукция имеет приемлемое качество.

    Электронный вид прибора

    В идеальном варианте электронный преобразователь должен быть оснащен транзистором. Его роль состоит в осуществлении разгрузки регулировочной микросхемы. Для исключения или максимального сглаживания пульсации, на выходе монтируется конденсатор.

    Такого типа устройство относится к дорогостоящей категории, однако оно способно стабилизировать ток до 750 мА, на что балластные механизмы неспособны.

    Самые новые драйвера, в основном устанавливают на лампочки с цоколем E27. Исключение из правил – изделия Gauss GU5,3. Они оснащены безтрансформаторным преобразователем. Однако степень пульсации в них достигает нескольких сотен Гц

    Пульсирование – это не единственный недостаток преобразователей. Вторым можно назвать электромагнитные помехи высокочастотного (ВЧ) диапазона. Так, если в розетку, связанную со светильником, будут подключаться другие электроприборы, например, радио - можно ожидать помехи при приеме цифровых FM-частот, телевидения, роутера и т. д.

    В опциональном устройстве качественного прибора должны быть два конденсатора: один – электролитический для сглаживания пульсаций, другой – керамический, для понижения ВЧ. Однако такое сочетание можно встретить нечасто, особенно если говорить о китайских изделиях.

    Те, кто имеет общие понятия в подобных электросхемах, могут самостоятельно подбирать выходные параметры электронного преобразователя, изменяя номинал резисторов

    За счет высокого КПД (до 95%) такие механизмы подходят для мощных приборов, используемых в различных сферах, например, для тюнинга автомобилей, в уличных осветительных приборах, а также бытовых LED источниках.

    Блок питания на основе конденсаторов

    Теперь переходим к не столь популярным устройствам – на базе конденсаторов. Практически все схемы светодиодных ламп дешевого образца, где применены такого типа драйверы, имеют схожие характеристики.

    Однако вследствие модификаций производителем они претерпевают изменения, например, удаление какого-либо элемента цепи. Особо часто этой деталью служит один из конденсаторов - сглаживающий.

    Вследствие бесконтрольного заполнения рынка дешевым и некачественным товаром пользователи могут «ощущать» в лампах стопроцентную пульсацию. Даже не углубляясь в их устройство, можно утверждать об удалении из схемы сглаживающего элемента

    Плюсов у таких механизмов всего два: они доступны для самостоятельной сборки, а их КПД приравнивается к стопроцентному, т. к. потери будут только на p-n переходах и сопротивлениях.

    Такое же количество и отрицательных сторон: низкая электробезопасность и высокая степень пульсации. Второй недостаток составляет около 100 Гц и образуется в результате выпрямления переменного напряжения. В ГОСТе прописана норма допустимой пульсации в 10-20 % в зависимости от предназначения помещения, где установлен светотехнический прибор.

    Единственный способ сгладить этот недостаток – подбор конденсатора с правильным номиналом. Тем не менее не стоит рассчитывать на полное устранение проблемы, – такое решение может всего лишь сгладить интенсивность всплесков.

    Диммируемые преобразователи тока

    Драйверы-светорегуляторы для позволяют менять входящие и выходящие показатели тока, при этом снижается или увеличивается степень яркости света, излучаемого диодами.

    Существует два метода подключения:

    • первый предполагает плавный пуск;
    • второй – импульсный.

    Рассмотри принцип работы диммируемых драйверов на основе микросхемы CPC9909, используемой в качестве регулирующего аппарата для светодиодных цепей, в том числе и с высокой яркостью.


    Схема стандартного включения CPC9909 с питанием 220 В. Согласно схематическим указаниям, есть возможность управления одним или несколькими мощными потребителями

    При плавном пуске микросхема с драйвером обеспечивает постепенное включение диодов с нарастающей яркостью. Для этого процесса задействуют два резистора, подключенные к выводу LD, предназначенного для выполнения задачи плавного диммирования. Так реализуется важная задача – продление срока эксплуатации LED элементов.

    Этот же вывод обеспечивает и аналоговое регулирование - резистор на 2,2 кОм меняют на более мощный переменный аналог - 5,1 кОм. Таким образом достигается плавное изменение потенциала на выходе.

    Применение второго способа предполагает подачу импульсов прямоугольного типа на низкочастотный вывод PWMD. При этом задействуют либо микроконтроллер, либо импульсный генератор, которые обязательно разделяются оптопарой.

    С корпусом или без него?

    Драйвера выпускаются в корпусе или без. Первый вариант является самым распространенным и более дорогим. Такие устройства защищены от попадания влаги и частиц пыли.

    Приспособления второго типа применяются при проведении скрытого монтажа и, соответственно, отличаются дешевизной.

    Питание всех представленных приборов может быть от сети 12 В или 220 В. Несмотря на то, что бескорпусные модели выигрывают в цене, они существенно отстают в плане безопасности и надежности механизма

    Каждый из них отличается допустимой температурой в процессе эксплуатации – на это также необходимо обращать внимание при подборе.

    Классическая схема драйвера

    Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.

    Схема такого механизма составлена из трех основных каскадных областей:

    1. Разделитель напряжения на емкостном сопротивлении.
    2. Выпрямитель.
    3. Стабилизаторы напряжения.

    Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.

    Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.

    Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.

    Процесс выпрямления на этом участке выполняется по схеме Гретца. Диодный мост подбирается, отталкиваясь от номинального тока и обратного напряжения. При этом последнее значение не должно быть меньше 600 В

    Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.

    Так как питание светодиодов не должно превышать 12 В, для схемы необходимо использовать стабилизирующий элемент. Для этого вводится емкостный фильтр. Например, можно применять модель L7812

    Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.

    Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.

    Выводы и полезное видео по теме

    Все сложности, с которыми может столкнуться радиолюбитель, подбирающий преобразователь для мощных LED ламп, подробно описаны в видеосюжете:

    Ключевые особенности самостоятельного подключения преобразовательного прибора в электросхему:

    Поэтапный инструктаж, описывающий процесс сборки своими руками светодиодного драйвера из подручных средств:

    Несмотря на заявленные производителем десятки тысяч часов бесперебойной работы светодиодных ламп, есть множество факторов, существенно снижающих эти показатели.

    Для сглаживания всех прыжков тока в электросистеме предназначены драйверы. К их выбору или самостоятельной сборке нужно подходить ответственно после просчета всех необходимых параметров.

    Расскажите о том, как подбирали драйвер для работы светодиодной лампочки. Поделитесь своими аргументами и способами стабилизации поставки напряжения диодному прибору освещения. Оставляйте комментарии в находящемся ниже блоке, задавайте вопросы, размещайте фотоснимки по теме статьи.

    Сегодня, наверное, ни одна квартира или частный дом не обходится без светодиодного освещения. Да и уличное освещение постепенно меняется на экономичные и долговечные LED-элементы. Но глядя на сегодняшнюю тему разговора спрашивается – при чем тут водитель (с английского «driver» переводится именно так)? Это первый вопрос, приходящий в голову человеку, несведущему в устройстве светодиодного освещения. На самом деле без такого устройства световые диоды не работают с напряжением в сети 220 В. Сегодня разберемся, какую функцию выполняет драйвер для светодиодов, как подключить это устройство и возможно ли изготовить собственными руками.

    Читайте в статье:

    Зачем нужны драйверы для светодиодов и что это такое

    Ответ на вопрос, что такое драйвер для светодиода, довольно прост. Это устройство, стабилизирующее напряжение и придающее ему те характеристики, которые нужны для работы LED-элементов. Чтобы было понятнее, проведем аналогию с пускорегулирующим устройством люминесцентной лампы, которая также не может работать без дополнительного оборудования. Разница лишь в том, что драйвер имеет компактный размер и умещается в корпусе светового прибора. По сути его можно назвать стабилизирующим пусковым устройством или преобразователем частоты.


    Где применяют стабилизирующие устройства для LED-элементов

    LED-драйверы для светодиодов применяются в различных областях:

    • фонари уличного освещения;
    • лампы бытового освещения;
    • светодиодные ленты и различная подсветка;
    • офисные светильники с формой люминесцентных ламп.

    Даже дневные ходовые огни автомобилей требуют установки такого устройства, но здесь все гораздо проще, можно обойтись одним резистором. И хотя драйвер для светодиодной ленты (к примеру) по характеристикам отличается от стабилизатора напряжения лампочки, функцию они выполняют одну.


    Принцип работы схемы драйвера светодиодной лампы 220 В

    Принцип работы устройства заключается в поддержании на выходном напряжении (независимо от его величины) заданного тока. В этом и состоит отличие от стабилизирующего блока питания, который отвечает за напряжение.


    Рассматривая схему видим, что ток, проходя через сопротивления, стабилизируется, а конденсатор придает ему нужную частоту. Затем в дело вступает выпрямляющий диодный мост. Получаем стабилизированный прямой ток на светодиодах, который повторно ограничивается резисторами.

    Характеристики драйверов, достойные внимания

    Характеристики преобразователей, необходимых в том или ином случае, определяются, исходя из параметров LED-потребителей. Основными можно назвать:

    1. Номинальную мощность драйвера – этот параметр должен превышать общую мощность, потребляемую световыми диодами, которые будут в его схеме.
    2. Выходное напряжение – зависит от величин падения напряжения на каждом из световых диодов.
    3. Номинальный ток , который зависит от яркости свечения и потребляемой мощности элемента.

    Важно знать! Падение напряжения на светодиоде зависит от его цвета. К примеру, если к БП 12 В получится подключить 16 светодиодов красного цвета, то максимальное количество зеленых составит уже 9.

    Разделение LED-драйверов по типу устройства

    Разделить преобразователи можно на два типа – линейные и импульсные. Оба типа применимы к световым диодам, но различия между ними заметны и по стоимости, и по техническим характеристикам.


    Линейные преобразователи отличаются простотой конструкции и низкой стоимостью. Но такие драйверы имеют существенный недостаток – возможность подключения только маломощных световых элементов. Часть энергии тратится на выделение тепла, что способствует снижению коэффициента полезного действия (КПД).

    Импульсные преобразователи основаны на принципе широтно-импульсной модуляции (ШИМ) и при их работе величины выходных токов обусловлены таким параметром, как коэффициент заполнения. Это означает, что изменения частоты импульсов нет, а вот коэффициент заполнения способен изменяться на величины от 10 до 80%. Такие драйверы позволяют продлить срок службы световых диодов, но имеют один недостаток. При их работе возможно наведение электромагнитных помех. Попробуем разобраться, чем это грозит человеку на простом примере.


    У проживающего в квартире или доме установлен кардиостимулятор. При этом в небольшой комнате установлена люстра с множеством приборов, работающих на импульсных лед драйверах для . Кардиостимулятор при этом может начать давать сбои. Конечно, это утрировано и для создания столь сильных помех нужно очень много ламп, которые находятся на расстоянии менее метра от кардиостимулятора, но все же риск присутствует.


    Как подобрать драйвер для светодиода: некоторые нюансы

    Перед тем, как приобретать преобразователь, рассчитывают потребляемую светодиодами мощность. Номинальная мощность устройства должна превышать этот показатель на 25÷30%. Так же стабилизатор должен совпадать по выходному напряжению.

    Если планируется скрытое размещение, лучше выбрать преобразователь без корпуса – стоимость выйдет ниже при тех же технических характеристиках.


    Важно! Драйверы китайского производства обычно не соответствуют заявленным характеристикам. Не стоит экономить на приобретении преобразователя «made in оттуда». Лучше отдать предпочтение российскому производителю.

    Как подключить LED-элементы к преобразователю: способы и схемы

    Светодиоды к драйверу подключаются двумя способами – последовательно или параллельно. Для примера возьмем 6 LED-излучателей с падением напряжения 2 В. При последовательном подключении понадобится драйвер на 12 В и 300 мА. При этом свечение будет ровным по всем элементам.


    Подключив излучатели параллельно в группе по 3, получим возможность использования преобразователя 6 В, но уже на 600 мА. Проблема в том то, что из-за неравномерного падения напряжения одна линия будет светиться ярче, чем другая.

    Рассчитываем характеристики преобразователя для светодиодов

    Для точного расчета сначала определяемся с потребляемой мощностью светодиодов. После решается вопрос со схемой подключения – будет она параллельной или последовательной. От этого будет зависеть выходное напряжение и номинальная мощность необходимого преобразователя. Это вся работа, которую нужно выполнить. Теперь в магазине электротехники или на онлайн ресурсе подбираем драйвер согласно высчитанным показателям.


    Полезно знать! Приобретая преобразователь, спрашивайте у продавца сертификат соответствия на изделие. Если он отсутствует, от покупки лучше воздержаться.

    Что такое диммируемый драйвер для световых диодов

    Диммируемым называется драйвер для светодиодного светильника, поддерживающий изменение входных параметров тока и способный в зависимости от этого изменять выходные. Эти достигается изменение интенсивности свечения LED-излучателей. Примером может послужить контроллер для светодиодной ленты с дистанционным управлением. При желании появляется возможность «приглушить» освещение в помещении, дать отдохнуть глазам. Так же это уместно, если в комнате спит ребенок.


    Диммирование выполняется с ПДУ, или со штатного механического бесступенчатого переключателя.

    Китайские преобразователи – что в них особенного

    Китайские друзья славятся умением подделать оборудование так, что им становится невозможно пользоваться. По отношению к драйверам можно сказать так же. Приобретая китайское устройство будьте готовыми к завышенным заявленным характеристикам, низкому качеству и быстрому выходу преобразователя из строя. Если же собирается первый в жизни LED-светильник, потренироваться и получить навыки в радиоэлектронике, такие изделия незаменимы по причине низкой стоимости и простоты исполнения.


    Что влияет на срок службы преобразователей

    Причинами выхода из строя преобразователя становятся:

    1. Резкие скачки напряжения в сети.
    2. Повышенная влажность, если устройство не соответствует по степени защиты.
    3. Перепады температур.
    4. Недостаточная вентиляция.
    5. Повышенная запыленность.
    6. Неправильный расчет мощности потребителей.

    Любую из этих причин можно предупредить или исправить. Это означает, что в силах домашнего мастера продлить срок службы стабилизирующего устройства.

    Схема драйвера светодиодов PT4115 с регулятором яркости

    Речь пойдет о китайском производителе, который является исключением из правил. Микросхема, на основе которой можно собрать простейший преобразователь как раз его производства. Микропроцессор PT4115 обладает хорошими характеристиками и набирает популярность в России.


    Статья по теме:

    Если освещение светодиодное и обычные регуляторы не подходят, то тогда устанавливаются , которые немного отличаются конструктивно и технически. Сегодня разберемся, какими они бывают, как выбрать и даже изготовить подобное устройство самостоятельно.

    На рисунке представлена простейшая схема драйвера PT4115 для светодиодов, собрать которую сможет начинающий домашний мастер без опыта работы с радиоэлектроникой. Интересным в микросхеме является дополнительный выход (DIM) позволяющий подключение светорегулятора (диммера).

    Как сделать драйвер для светодиодов своими руками

    Собрать схему драйвера светодиодной лампы сможет любой начинающий мастер. Но для этого потребуется аккуратность и терпение. С первого раза стабилизирующее устройство может не получиться. Чтобы читателю было понятнее, как выполняется работа, предлагаем несколько простейших схем.

    Как можно убедиться, ничего сложного в схемах драйверов для светодиодов от сети 220 В нет. Попробуем рассмотреть пошагово все этапы работ.

    Пошаговая инструкция изготовления драйвера для светодиодов своими руками

    Фото пример Выполняемое действие
    Для работы нам понадобится обычный блок питания для телефона. С его помощью все выполняется быстро и просто.
    После разборки зарядного устройства в руках у нас уже практически полноценный драйвер для трех одноваттных светодиодов, однако его нужно немного доработать.
    Выпаиваем ограничительный резистор на 5 кОм, который находится возле выходного канала. Именно он не дает зарядному устройству подать слишком большое напряжение на сотовый телефон.
    Вместо ограничительного впаиваем подстроечный резистор, выставив на нем те же 5кОм. Впоследствии добавим напряжение до необходимого.
    На выходной канал припаивается 3 светодиода по 1 Вт каждый, соединенные последовательно, что в сумме даст нам 3 Вт.
    Находим входные контакты и отпаиваем от печатной платы. Они нам уже не нужны…
    …а на их место припаиваем сетевой шнур, по которому будет подаваться питание 220 В.
    При желании в разрыв можно поставить резистор на 1 Ом, выставить амперметром все показатели. В этом случае диапазон затухания светодиодов будет шире.
    После полной сборки проверяем работоспособность. Выходное напряжение 5 В, светодиоды пока не светятся.
    Поворачивая регулятор на резисторе видим, как LED-элементы начинают «разгораться».

    Будьте внимательны. От такого преобразователя можно получить разряд не только в 220 В (от сетевого шнура), но и удар порядка 450 В, что довольно неприятно (проверено на себе).

    Очень важно! Перед тем, как проверить драйвер для светодиодов на работоспособность и подключить к источнику питания, стоит еще раз визуально проверить правильность собранной схемы. Поражение электрическим током опасно для жизни, а вспышка от короткого замыкания может причинить вред глазам.

    Преобразователи тока для световых диодов: где приобрести и какова стоимость

    Такие устройства приобретаются в магазинах электротехники или на интернет ресурсах. Второй вариант выгоднее по цене. К тому же многие производители предлагают бесплатную доставку. Рассмотрим некоторые модели со входным напряжением 220 В с техническими характеристиками и стоимостью по состоянию на декабрь 2017 года.

    Фото Модель Класс защиты, IP Выходное напряжение, В Мощность, Вт Стоимость, руб.
    DFT-I-40- LD64 20 60-130 45 400
    ZF-AC LD49 40 40-70 54 450
    XS0812-12W PS12 20 24-44 12 200
    PS100 (открытый) 20 30-36 100 1100
    PF4050A PS50 65 27-36 50 500
    PF100W LD100 65 23-36 100 1000

    Глядя на цены можно сказать, что самостоятельное изготовление преобразователя тока скорее подойдет тем, для кого это только увлечение. Приобрести такое устройство можно довольно недорого.


    Подведём итог

    Выбирая преобразователь тока для светодиодных ламп, следует все внимательно просчитать. Любая погрешность может привести к уменьшению срока службы приобретенного прибора. Несмотря на невысокую стоимость стабилизатора, довольно неприятно постоянно выкидывать деньги на ветер. Только в этом случае драйвер прослужит положенный ему срок. А при самостоятельном изготовлении соблюдайте правила электробезопасности и будьте аккуратны и внимательны при сборке схемы.

    Надеемся, что предоставленная сегодня информация была полезна нашему читателю. Возникшие вопросы можно задать в обсуждении – мы на них обязательно ответим. Пишите, спрашивайте, делитесь опытом с другими читателями.

    А напоследок небольшое видео по сегодняшней теме:

    должны подключаться к электросети через специальные устройства, стабилизирующие ток – драйверы для светодиодов. Это преобразователи напряжения переменного тока 220 В в постоянный ток с необходимыми для работы световых диодов параметрами. Только при их наличии можно гарантировать стабильную работу, длительный срок эксплуатации LED-источников, заявленную яркость, защиту от короткого замыкания и перегрева. Выбор драйверов небольшой, поэтому лучше сначала приобрести преобразователь, а потом под него подбирать . Собрать устройство можно самостоятельно по простой схеме. О том, что такое драйвер для светодиода, какой купить и как правильно его использовать, читайте в нашем обзоре.

    – это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

    Какая именно нужна мощность и насколько падает при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.


    По сути, драйвер – это . Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

    Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 , каждый из которых создает падение в сети на 3 В.

    Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

    Где применяют

    Спрос на преобразователи растет вместе с популярностью светодиодов. – это экономичные, мощные и компактные приборы. Их применяют в разнообразных целях:

    • для фонарей ;
    • в быту;
    • для обустройства ;
    • в автомобильных и велосипедных фарах;
    • в небольших фонарях;

    При подключении в сеть 220 В всегда нужен драйвер, в случае использования постоянного напряжения допустимо обойтись резистором.


    Как работает устройство

    Принцип работы LED-драйверов для светодиодов заключается в поддержании заданного тока на выходе, независимо от изменения напряжения. Ток, проходящий через сопротивления внутри прибора, стабилизируется и приобретает нужную частоту. Затем проходит через выпрямляющий диодный мост. На выходе получаем стабильный прямой ток, достаточный для работы определенного количества светодиодов.

    Основные характеристики драйверов

    Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

    1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
    2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
    3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

    В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

    Виды преобразователей тока по типу устройства

    Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

    Тип устройства Технические характеристики Плюсы Минусы Сфера применения

    Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряжении Не создает помех, недорогой КПД менее 80%, сильно нагревается Маломощные светодиодные светильники, ленты, фонарики

    Работает на основе широтно-импульсной модуляции Высокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементов Создает электромагнитные помехи Тюнинг автомобилей, уличное освещение, бытовые LED-источники

    Как подобрать драйвер для светодиодов и рассчитать его технические параметры

    Драйвер для светодиодной ленты не подойдет для мощного уличного фонаря и наоборот, поэтому необходимо как можно точнее рассчитать основные параметры устройства и учесть условия эксплуатации.

    Параметр От чего зависит Как рассчитать
    Расчет мощности устройства Определяется мощностью всех подключаемых светодиодов Рассчитывается по формуле P = PLED-источника × n , где P – это мощность драйвера; PLED-источника – мощность одного подключаемого элемента; n – количество элементов. Для запаса мощности 30% нужно P умножить на 1,3. Полученное значение – это максимальная мощность драйвера, необходимая для подключения осветительного прибора
    Расчет напряжения на выходе Определяется падением напряжения на каждом элементе Величина зависит от цвета свечения элементов, она указывается на самом устройстве или на упаковке. Например, к драйверу 12 В можно подключить 9 зеленых или 16 красных светодиодов.
    Расчет тока Зависит от мощности и яркости светодиодов Определяется параметрами, подключаемого устройства

    Преобразователи выпускаются в корпусе и без. Первые выглядят более эстетичными и имеют защиту от влаги и пыли, вторые используются при скрытом монтаже и стоят дешевле. Еще одна характеристика, которую необходимо учесть – допустимая температура эксплуатации. Для линейных и импульсных преобразователей она разная.

    Важно! На упаковке с устройством должны быть указаны его основные параметры и производитель.


    Способы подключения преобразователей тока

    Светодиоды можно подключить к устройству двумя способами: параллельно (несколькими цепочками с одинаковым количеством элементов) и последовательно (один за одним в одной цепи).

    Для соединения 6 элементов, падение напряжения которых составляет 2 В, параллельно в две линии понадобится драйвер 6 В на 600 мА. А при подключении последовательно преобразователь должен быть рассчитан на 12 В и 300 мА.

    Последовательное подключение лучше тем, что все светодиоды будут светиться одинаково, тогда как при параллельном соединении яркость линий может различаться. При последовательном соединении большого количества элементов потребуется драйвер с большим выходным напряжением.

    Диммируемые преобразователи тока для светодиодов

    – это регулирование интенсивности света, исходящего от осветительного прибора. Диммируемые драйверы для позволяют изменять входные и выходные параметры тока. За счет этого увеличивается или уменьшается яркость свечения светодиодов. При использовании регулирования, возможно изменение цвета свечения. Если мощность меньше, то белые элементы могут стать желтыми, если больше, то синими.


    Китайские драйверы: стоит ли экономить

    Драйверы выпускаются в Китае в огромном количестве. Они отличаются низкой стоимостью, поэтому довольно востребованы. Имеют гальваническую развязку. Их технические параметры нередко завышены, поэтому при покупке дешевого устройства стоит это учесть.

    Чаще всего это импульсные преобразователи, с мощностью 350÷700 мА. Далеко не всегда они имеют корпус, что даже удобно, если прибор приобретается с целью экспериментирования или обучения.

    Недостатки китайской продукции:

    • в качестве основы используются простые и дешевые микросхемы;
    • устройства не имеют защиты от колебаний в сети и перегрева;
    • создают радиопомехи;
    • создают на выходе высокоуровневую пульсацию;
    • служат недолго и не имеют гарантии.

    Не все китайские драйверы плохие, выпускаются и более надежные устройства, например, на базе PT4115. Их можно применять для подключения бытовых LED-источников, фонариков, лент.

    Срок службы драйверов

    Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

    Повлиять на срок службы могут такие факторы:

    • перепады температурного режима;
    • высокая влажность;
    • скачки напряжения;
    • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

    Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или , возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

    Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

    Схема драйверов для светодиодов с регулятором яркости на базе РТ4115 своими руками

    Простой преобразователь тока можно собрать на базе готовой китайской микросхемы PT4115. Она является достаточно надежной для применения. Характеристики микросхемы:

    • КПД до 97%;
    • есть вывод для устройства, регулирующего яркость;
    • защищена от разрывов нагрузки;
    • максимальное отклонение стабилизации 5%;
    • входное напряжение 6÷30 В;
    • мощность на выходе 1,2 А.

    Микросхема подходит для питания LED-источника свыше 1 Вт. Имеет минимум компонентов обвязки.

    Расшифровка выходов микросхемы:

    • SW – выходной переключатель;
    • DIM – диммирование;
    • GND – сигнальный и питающий элемент;
    • CIN – конденсатор
    • CSN – датчик тока;
    • VIN – напряжение питания.

    Собрать драйвер на базе этой микросхемы может даже начинающий мастер.


    Схема драйвера светодиодной лампы 220 В

    Стабилизатор тока в случае со устанавливается в цоколе прибора. И выполняется на базе недорогих микросхем, например, СРС9909. Такие лампы обязательно оснащаются системой охлаждения. Служат они намного дольше, чем любые другие, но лучше отдавать предпочтение проверенным производителям, так как в китайских заметна ручная пайка, асимметрия, отсутствие термопасты и прочие недостатки, снижающие срок службы.


    Как изготовить драйвер для светодиодов своими руками

    Устройство можно сделать из любого ненужного зарядного устройства для телефона. Стоит внести лишь минимальные усовершенствования и микросхему можно подключать к светодиодам. Его достаточно для питания 3 элементов по 1 Вт. Для подключения более мощного источника можно использовать платы от люминесцентных ламп.

    Важно! Во время работы необходимо соблюдать технику безопасности. Про прикосновении к оголенным частям возможен удар током как до 400 В.

    Фото Этап сборки драйвера из зарядного устройства

    Снять корпус с зарядного устройства.

    При помощи паяльника убрать резистор, который ограничивает напряжение, подаваемое к телефону.

    Установить на его место подстроечный резистор, пока его нужно выставить на 5 кОм.

    Последовательным соединением припаять светодиоды на выходной канал устройства.

    Убрать входные каналы паяльником, на их место припаять сетевой шнур для подключения к сети 220 В.

    Проверить работоспособность схемы, установить регулятором на подстроечном резисторе нужное напряжение, чтобы светодиоды светили ярко, но не изменили цвет.

    Пример схемы драйвера для светодиодов от сети 220 В

    Драйверы для светодиодов: где купить и сколько стоят

    Приобрести стабилизаторы для светодиодных ламп и микросхемы к ним можно в магазине радиодеталей, электротехники и на многих торговых интернет-площадках. Последний вариант – самый экономичный. Стоимость устройства зависит от его технических характеристик, типа и производителя. Средние цены на некоторые виды драйверов приведены в таблице ниже.

    Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

    От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

    Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

    Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

    Схема питания светодиодов на основе конденсаторного делителя

    К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

    В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

    Схема драйвера на CPC9909

    Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

    Общие сведения

    Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

    Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

    Назначение выводов

    Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

    1. VIN. Предназначен для подачи напряжения питания.
    2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
    3. GND. Общий вывод драйвера.
    4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
    5. PWMD. Низкочастотный диммирующий вход.
    6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
    7. LD. Предназначен для задания аналогового диммирования.
    8. RT. Предназначен для подключения время задающего резистора.

    Схема и ее принцип работы

    Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа.
    Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – R S – «-диодного моста».
    За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L.
    Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты.
    Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на R S . Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

    Расчет внешних элементов

    Частотозадающий резистор

    Длительность паузы выставляют внешним резистором R T и определяют по упрощенной формуле:

    t паузы =R T /66000+0,8 (мкс).

    В свою очередь время паузы связано с коэффициентом заполнения и частотой:

    t паузы =(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

    Датчик тока

    Номинал сопротивления R S задает амплитудное значение тока через светодиод и рассчитывается по формуле: R S =U CS /(I LED +0.5*I L пульс), где U CS – калиброванное опорное напряжение, равное 0,25В;

    I LED – ток через светодиод;

    I L пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*I LED .

    После преобразования формула примет вид: R S =0,25/1.15*I LED (Ом).

    Мощность, рассеиваемая датчиком тока, определяется формулой: P S =R S *I LED *D (Вт).

    К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

    Дроссель

    Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

    L=(US LED *t паузы)/ I L пульс, где U LED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

    Фильтр питания

    В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

    Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

    Выпрямитель

    Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: I AC =(π*I LED)/2√2, А.

    Полученное значение необходимо умножить на два для повышения надежности схемы.

    Выбор остальных элементов схемы

    Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

    Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: I Q1 =I D1 = D*I LED , А.

    Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

    Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

    I FUSE =5*I AC , А.

    Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

    R TH =(√2*220)/5*I AC , Ом.

    Другие варианты включения CPC9909

    Плавный пуск и аналоговое диммирование

    При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

    Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

    Импульсное димирование

    Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

    Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

    Читайте так же

    В продолжение темы:
    Windows 10

    Выберите документ из архива для просмотра: Лабораторная работа по Excel №1.doc Библиотека материалов Лабораторная работа №1 Упражнение 1 Введение основных понятий, связанных...